The Bergman kernel function: Explicit formulas and zeroes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bergman Kernel Function

In this note, we point out that a large family of n × n matrix valued kernel functions defined on the unit disc D ⊆ C, which were constructed recently in [9], behave like the familiar Bergman kernel function on D in several different ways. We show that a number of questions involving the multiplication operator on the corresponding Hilbert space of holomorphic functions on D can be answered usi...

متن کامل

Zeroes of the Bergman kernel of Hartogs domains

We exhibit a class of bounded, strongly convex Hartogs domains with realanalytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.

متن کامل

Explicit formulas for the Green’s function and the Bergman kernel for monogenic functions in annular shaped domains in R

By applying a reflection principle we set up fully explicit representation formulas for the harmonic Green’s function for orthogonal sectors of the annulus of the unit ball of R. From the harmonic Green’s function we then can determine the Bergman kernel function of Clifford holomorphic functions by applying an appropriate vector differentiation. As a concrete application we give an explicit an...

متن کامل

Bergman Kernel, Deformation Quantization and Feynman Diagram Formulas

This expository article is an expanded version of the talk given by the author at the 2013 ICCM conference in Taipei. We report our recent work on explicit closed formulas of the asymptotic expansions of the Bergman kernel, and the relationship to deformation quantization on Kähler manifolds. These formulas are expressed as summations over strongly connected graphs.

متن کامل

The Bergman Kernel Function and Proper Holomorphic Mappings

It is proved that a proper holomorphic mapping / between bounded complete Reinhardt domains extends holomorphically past the boundary and that if, in addition, /~'(0) = {0}, then / is a polynomial mapping. The proof is accomplished via a transformation rule for the Bergman kernel function under proper holomorphic mappings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-04570-0